Improved case

The improved case of the SIEEB resulted from the advanced technological solutions and control strategies such as sun shading, radiant ceilings, displacement ventilation and maximizing natural and minimizing artificial lighting. In the DOE simulations, these strategies are simulated as described below:

Sun shading: the values of direct and diffuse solar radiation are reduced to 50% during summer and 80% during winter.

Radiant ceilings: the set points for thermal comfort conditions corresponding to dry bulb temperature is increased by 1°C for summer and is decreased by 2°C for winter.

Displacement ventilation: reducing the values of fresh air volume by 20%.

Lighting: high efficient lamps and control sensors (dimming)

The above hypotheses considered for simulating the advanced technological solutions and control strategies are quite reasonable and are expected to calculate the values of energy savings reasonably well.

Energy Demand — Improved Case

J FMAMJ J ASOND

Month

Figure 5 shows the monthly energy demand for cooling, heating and lighting & equipments corresponding to improved case of SIEEB preliminary design.

Figure 5. SIEEB (Improved case) — Monthly Energy Demand

The potential load reductions based on advanced technological solutions and control strategies are shown in figure 6. It has been observed that for improved case the annual energy load reductions for cooling, heating and lighting & equipments can be achieved up to 30%, 23% and 20% respectively.

2. Conclusions

A methodology for the energy efficient design of the Sino-Italy Environment & Energy Building (SIeEb) is presented. It has been shown that using various advanced technological solutions and control strategies in the SIEEB, an appreciable amount of energy savings can be achieved. Since the results, presented here, are in comparison with a reference case in which the building envelope is already optimised, therefore, compared to a baseline building, constructed as per the current practices in China, the

Energy Load Reduction

□ Reference Case □ Improved case

Figure 6. SIEEB (Improved case) — Energy Load reduction

SIEEB is expected to contribute much higher amount of energy savings. SIEEB is an ecological and energy efficient pilot building and represents a model for a new generation of sustainable buildings. SIEEB can also be seen as an ideal case for assessing the benchmark for implementing the clean development mechanism (CDM), aimed to reduce CO2 emissions according to the accounting procedures defined within Kyoto protocols (IPCC, 2000).

References

J. Chang, Dennis Y. C. Leung, C. Z. Wu, Z. H. Yuan (2003), ‘A review on the energy production, consumption, and prospect of renewable energy in China’, Renewable and Sustainable Energy Reviews, 7, 453-468.

F. Butera, S. Ferrari, N. Aste, P. Caputo, P. Oliaro, U. Beneventano and R. S. Adhikari (2003), ‘Ecological design procedures for Sino-Italian Environment and Energy Building : Results of Ist Phase on the Shape Analysis’, Proc. PLEA-2003 Conference, Santiago, Chile, November 2003.

DOE-2 Manuals (Version 2.1) (1980), US National Technical Information Service, Department of Commerce, Springfield, Virginia, USA.

J. Chen (2003) Sustainable Buildings: the Chinese Perspective, Challenges and Opportunities, Presented at the COP-9 Conference, December 1-12, 2003, Milan, Italy.

IPCC(2000), Website www. ipcc. ch.