Bulk-fluid temperature profile

The temperature profile of the coolant along the heated length of the fuel channel can be calculated based on the heat balance. Equation (16) was used to calculate the temperature profile of the coolant. The NIST REPFROP software Version 8.0 was used to determine the thermophysical properties at a bulk-fluid temperature corresponding to each one-millimeter interval.

hi+1 = hj + ЕЛ*.. Дх (16)

In Eq. (16), qx is the axial heat flux value, which is variable along the heated length of the fuel channel if a non-uniform Axial Heat Flux Profile (AHFP) is used. In the present chapter, four AHFPs have been applied in order to calculate the fuel centerline temperature in fuel channels at the maximum channel thermal power. These AHFPs are cosine, upstream — skewed cosine, downstream-skewed cosine, and uniform. The aforementioned AHFPs were calculated based on power profiles listed in Leung (2008) while the downstream-skewed AHFP was determined as the mirror image of the upstream-skewed AHFP. A local heat flux can be calculated by multiplying the average heat flux by the corresponding power ratio from Fig. 13.

It should be noted that there are many power profiles in a reactor core. In other words, the axial heat flux profile in each fuel channel differs from those of the other fuel channels. This variation in power profiles is due to the radial and axial power distribution, fuel burn-up, presence of reactivity control mechanisms, and refuelling scheme. Thus, a detailed design requires the maximum thermal power in the core, which can be determined based on neutronic analysis of the core which is beyond the scope of this chapter. However, the four examined AHFPs envelope a wide range of power profiles.

image310

Fig. 13. Power ratios along heated length of fuel channel (based on Leung (2008)).