Как выбрать гостиницу для кошек
14 декабря, 2021
There are essentially three primary energy sources for the billions of people living on the earth’s surface: the sun, radioactivity, and gravitation. The sun, an enormous nuclear fusion reactor, has transmitted energy to the earth for billions of years, sustaining photosynthesis, which in turn produces wood and other combustible resources (biomass), and the fossil fuels like coal, oil, and natural gas. The sun also provides the energy that steers the climate, the atmospheric circulations, and thus ‘fuelling’ wind mills, and it is at the origin of photovoltaic processes used to produce electricity. Radioactive decay of primarily uranium and thorium heats the earth underneath us and is the origin of geothermal energy. Hot springs have been used as a source of energy from the early days of humanity, although it took until the twentieth century for the potential of radioactivity by fission to be discovered. Gravitation, a non-nuclear source, has been long used to generate energy, primarily in hydropower and tidal power applications.
Although nuclear processes are thus omnipresent, nuclear technology is relatively young. But from the moment scientists unraveled the secrets of the atom and its nucleus during the twentieth century, aided by developments in quantum mechanics, and obtained a fundamental understanding of nuclear fission and fusion, humanity has considered these nuclear processes as sources of almost unlimited (peaceful) energy. The first fission reactor was designed and constructed by Enrico Fermi in 1942 in Chicago, the CP1, based on the fission of uranium by neutron capture. After World War II, a rapid exploration of fission technology took place in the United States and the Union of Soviet Socialist Republics, and after the Atoms for Peace speech by Eisenhower at the United Nations Congress in 1954, also in Europe andJapan. Avariety of nuclear fission reactors were explored for electricity generation and with them the fuel cycle. Moreover, the possibility of controlled fusion reactions has gained interest as a technology for producing energy from one of the most abundant elements on earth, hydrogen.
The environment to which materials in nuclear reactors are exposed is one of extremes with respect to temperature and radiation. Fuel pins for nuclear reactors operate at temperatures above 1000 °C in the center of the pellets, in fast reactor oxide fuels even above 2000 °C, whereas the effects of the radiation (neutrons, alpha particles, recoil atoms, fission fragments) continuously damage the material. The cladding of the fuel and the structural and functional materials in the fission reactor core also operate in a strong radiation field, often in a dynamic corrosive environment of the coolant at elevated temperatures. Materials in fusion reactors are exposed to the fusion plasma and the highly energetic particles escaping from it. Furthermore, in this technology, the reactor core structures operate at high temperatures. Materials science for nuclear systems has, therefore, been strongly focussed on the development of radiation tolerant materials that can operate in a wide range of temperatures and in different chemical environments such as aqueous solutions, liquid metals, molten salts, or gases.
The lifetime of the plant components is critical in many respects and thus strongly affects the safety as well as the economics of the technologies. With the need for efficiency and competitiveness in modern society, there is a strong incentive to improve reactor components or to deploy advanced materials that are continuously developed for improved performance. There are many examples of excellent achievements in this respect. For example, with the increase of the burnup of the fuel for fission reactors, motivated by improved economics and a more efficient use of resources, the Zircaloy cladding (a Zr-Sn alloy) of the fuel pins showed increased susceptibility to coolant corrosion, but within a relatively short period, a different zirconium-based alloy was developed, tested, qualified, and employed, which allowed reliable operation in the high burnup range.
Nuclear technologies also produce waste. It is the moral obligation of the generations consuming the energy to implement an acceptable waste treatment and disposal strategy. The inherent complication of radioactivity, the decay that can span hundreds of thousands of years, amplifies the importance of extreme time periods in the issue of corrosion and radiation stability. The search for storage concepts that can guarantee the safe storage and isolation of radioactive waste is, therefore, another challenging task for materials science, requiring a close examination of natural (geological) materials and processes.
The more than 50 years of research and development of fission and fusion reactors have undoubtedly demonstrated that the statement ‘technologies are enabled by materials’ is particularly true for nuclear technology. Although the nuclear field is typically known for its incremental progress, the challenges posed by the next generation of fission reactors (Generation IV) as well as the demonstration of fusion reactors will need breakthroughs to achieve their ambitious goals. This is being accompanied by an important change in materials science, with a shift of discovery through experiments to discovery through simulation. The progress in numerical simulation of the material evolution on a scientific and engineering scale is growing rapidly. Simulation techniques at the atomistic or meso scale (e. g., electronic structure calculations, molecular dynamics, kinetic Monte Carlo) are increasingly helping to unravel the complex processes occurring in materials under extreme conditions and to provide an insight into the causes and thus helping to design remedies.
In this context, Comprehensive Nuclear Materials aims to provide fundamental information on the vast variety of materials employed in the broad field of nuclear technology. But to do justice to the comprehensiveness of the work, fundamental issues are also addressed in detail, as well as the basics of the emerging numerical simulation techniques.
R. J.M. Konings European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
T. R. Allen
Department ofEngineering Physics, Wisconsin University, Madison, WI, USA
R. Stoller
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
S. Yamanaka
Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan