The influence of heavy metal toxicity on biomass production

Soil heavy metal contamination has become an increasing problem worldwide. Among the heavy metals, Cu, Zn, Mn, Cd, Pb, Ni and Cr are considered to be the most common toxicity problems causing increasing concern. Growth inhibition and reduced yield are common responses of horticultural crops to nutrient and heavy metal toxicity [2]. Nevertheless, sometimes less common responses happen under metal toxicity conditions. For example, in the case of Pb it has been suggested that inhibition of root growth is one of the primary effects of Pb toxicity through the inhibition of cell division at the root tip [59]. Significant reductions in plant height, as well as in shoot and root dry weight (varying from 3.3% to 54.5%), as compared with that of the controls, were found for Typha angustifolia plants in different Cr treatments [60]. Furthermore, according to Caldelas et al. (2012) [19], not only growth inhibition happened (reached 65% dry weight) under Cr toxicity conditions, but also root/shoot partitioning increased by 80%. Under Cr stress conditions, it was found that root and shoot biomass of Genipa americana L. were significantly reduced [20]. The biomass reduction of Genipa americana trees is ascribed, according to the same authors, to the decreased net photosynthetic rates and to the limitations in stomatal conductance. The disorganization of chloroplast structure and inhibition of electron transport is a possible explanation for the decreased photosynthetic rates of trees exposed to Cr stress [20]. In contrast to the above, Cd and Pb applications induced slight or even significant increase in plant height and biomass. The fact that Cd and Pb addition enhanced Ca and Fe uptake suggests that these two nutrients may play a role in heavy metal detoxification by Typha angustifolia plants; furthermore, increased Zn uptake may also contribute to its hyper Pb tolerance, as recorder in the increased biomass over the control plants [60]. According to the

image259

same authors (Bah et al., 2011), plants have mechanisms that allow them to tolerate relatively high concentrations of Pb in their environment without suffering from toxic effects.

Tzerakis et al. (2012) [2] found that excessively high concentrations of Mn and Zn in the leaves of cucumber (reached 900 and 450 mg/kg d. w., respectively), grown hydroponically under toxic Mn and Zn conditions, reduced the fruit biomass due to decreases in the number of fruits per plants, as well as in the net assimilation rate, stomatal conductance and transpiration rate. However, it was found that significant differences concerning biomass production between different species of the same genus exist under metal toxicity conditions; Melilotus officinalis seems to be more tolerant to Pb than Melilotus alba because no differences in shoot or root length, or number of leaves, were found between control plants and those grown under 200 and 1000 mg/kg Pb [15]. In addition to the above, genotypic differences between cultivars of the same species, concerning biomass production, under metal toxicity conditions may also be observed; Chatzistathis et al. (2012) [13] found that under excess Mn conditions (640 pM), plant growth parameters (shoot elongation, as well as fresh and dry weights of leaves, root and stem) of olive cultivar ‘Picual’ were significantly decreased, compared to those of the control plants (2 pM), something which did not happen in olive cultivar ‘Koroneiki’ (no significant differences were recorder between the two Mn treatments) (Figure 1). According to the same authors, some factors related to the better tolerance of ‘Koroneiki’ not only at whole plant level, but also at tissue and cell level, could take place. Such possible factors could be a better compartmentalization of Mn within cells and/or functionality of Mn detoxification systems [13]. Significant growth reductions of several plant species, grown under Mn toxicity conditions, have been mentioned by several researchers [61-65].

Nickel (Ni) toxicity, which may be a serious problem around industrial areas, can also cause biomass reduction. At high soil Ni levels (>200 mg/kg soil) reduced growth symptoms of Riccinus communis plants were observed [18]. According to Baccouch et al. (1998) [66], the higher concentrations of Ni have been reported to retard cell division, elongation, differentiation, as well as to affect plant growth and development. Excess Cd, which causes direct or indirect inhibition of physiological processes, such as transpiration, photosynthesis, oxidative stress, cell elongation, N metabolism and mineral nutrition may lead in growth retardation, leaf chlorosis and low biomass production [67]. According to the same authors,

Cd stress could induce serious damage in root cells of grey poplar (Populus x canescens). Arsenic (As) toxicity may be another (although less common) problem contributing to soil contamination. Repeated and widespread use of arsenical pesticides has significantly contributed to soil As contamination [4]. According to the same authors, plant growth parameters, such as biomass, shoot height, and root length, decreased with increased As concentrations in all soils.