Phytoplankton Biomass Impact on the Lake Water Quality

Ozden Fakioglu

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/55361

1. Introduction

Pyhtoplankton is a plant plankton which cannot move actively and changes location depending on the movement of water. Phytoplankton communities are widely spreaded from aquatic to terresial lands. Plankton form the first ring of food chain in aquatic environment effecting the efficiency of this environment. Daily, seasonally and yearly changes are important for calculating efficiency in aquatic fields. Phytoplankton composition is a trophic indication of the water mass. In addition, phytoplankton species are used as an indicator for determining the nutrient level which is the basis for preparing and monitoring the strategies of the lake management in the lakes. Using phytoplankton communities or other aquatic organisms for evaluating water quality is based on very ancient times. Saprobik and trophic inducator types are used in many researches [1-3]. In addition, various numerical indices have been developed [1-2]. However, none of them have been accepted extensively. This is caused by several reasons. Those reasons are:

a. Differences in phytoplankton groups and group concept

b. Dynamic properties of phytoplankton groups

c. Habitat diversity of freshwater ecosystems

d. Phytogeographical differences [4].

Phytoplankton communities are influenced by significant changes every year. The competitive environment known as seasonal succession has been changing [5]. If the conditions don’t change, this process results in the choice of communities dominated by one or more species. Phytoplankton responds rapidly to the condition chages. Conditional changes will result the formation of high compositional diversity [6].

The first approaches to classify algal communities don’t have wide range of application in determining water quality. Pankin’s approaches to classify algal communities in 1941 and 1945 weren’t generally accepted [4]. Reynold’s [7-8] applied a classic phytosociological

approach to phytoplankton data obtained from the lakes in northeast england and classified them into various communities. Sommer [5] found high similarities among the compositions of species and seasonal succession of Alpine lakes. Mason [9] reported that oligotrophic and eutrophic lakes have the communities of characteristic phytoplankton.

There are qualitative differences among phytoplankton communities in oligotrophic and eutrophic lakes. The compositon and the amoung of phytoplankton communities are affected by environmental conditions. For example, a numerical decrease is observed in Anabeana and Aphanizomenon species from heterosis blue-green algae found in mesotrophic lake layers with a decrease of nitrogen saturation in the lakes. In addition, there are differences among the environmental conditions preferred by Diatoms, Dinoflagellate or Cosmarium, Pandorina and Gemellicystis species, even though they can be found in the lakes with same level of nutrients [10].

In the works related with phytoplankton communities used for predicting the ecological structure of aquatic systems, it has been tried to develop functional groups by improving the systematic investigation. Furthermore, some indices was developed according to numerical and biovolume values of phytoplankton (Palmer Index (1969), Descy Index (1979), TDI Index (1995) etc.). HPLC pigment analysis is used for the diagnosis of phytoplankton species in recent years [11].

The methods we will mention for examination of plankton in aquatic environments are summarized by compiling researchers’ methods and techniques. The main target of these suggested methods is to obtain values close to the actual volume and weight of plankton in freshwater and to calculate the volume and weight (biomass) of these organisms by this method.

Besides, the methods and techniques in this subject are sensitive, determining ecological parameters which are characterizing the aquatic environment are important for the researches. Sampling error in this review may cause errors far beyond the susceptibility of calculations. In addition, vertically and horizontally distributions of plankton may show big changes against the effects of wind and light. For this reason, evaluating various samples collected as verticaly and horizontaly causes to get more reliable results from each sample.

Many techniques have been developed depending on the number, volume and cell structures of fresh water phytoplankton. In this section, studies conducted by calculating biovolume of phytoplankton used for estimating ecological characteristics of freshwater ecosystems will be summarized.