Growth characteristics of dominant microflora on the surface of activated carbon[43]

In the early period of IBAC operation, the results for the biomass and biological activity on the surface of activated carbon monitored continuously are shown in Fig. 11. and Fig. 12.. At initiating stage, there is a rapidly dropping period for the dominant micoflora biomass on activated carbon. As time goes by, dominant biocommunity becomes steady gradually. At initial stage of BAC process, the biomass on activated carbon surface is in little, different from IBAC process, therefore, the microbial action can be ignored basically. During this period, variation of the biological activity for dominant biocommunity is similar to the change of biomass.

image70

Figure 11. Variations of biomass on activated carbon

image71

Operation time (d)

Figure 12. Variations of biological activity in two activated carbon processes

The variations of biomass and biological activity of microbe on activated carbon in long­term operation process are shown in Fig. 13. As shown, the biomass on carbon bed remains constant which mainly because of a gradual adaptation process of dominant biocommunity to the water, during which the adhesive ability of the dominant biocommunity is relatively low. Therefore microbe on the upper layer will be washed into the lower layer of the activated carbon, which has a beneficial effect on the reasonable distribution of the dominant biocommunity. With the extension of operating time, the dominant biocommunity will be adapted to the environment gradually. Meanwhile, due to the higher concentration of nutrient media in the upper layer, the biomass on the upper layer will be greatly increased and remains constant for a long period. Being different from the constancy of biomass on activated carbon, the biological activities in the upper and the lower layers of IBAC bed have a decreasing tendency as operation time goes. Shown from the result of PCR-DGGE, this reduction is mainly caused by the continuous incursion of the native bacteria with low capacity.

image72

Figure 13. Variation of biomass and biological activity on activated carbon