Application fields and the typical process flow of biological activated carbon technology

At present, the application of BAC technology is mainly focused on 3 aspects: the advanced treatment for potable water and the industrial waste water treatment. The typical process of the advanced treatment for drinking water and sewage reuse is shown in Fig. 3. All of the three processes are based on conventional coagulation-sedimentation-filtration way. They are distinct from the different positions, the two processing points, to import ozone and the activated carbon. In process a, the activated carbon procedure is between sedimentation and filtration. The outflow from the activated carbon layer will bring some tiny carbon particles and fallen microorganisms, which will be removed by a sand filter in the end. To improve the filtration efficiency, chlorination and enhanced coagulation were done firstly before this procedure. In this process, the quality of the outflow is guaranteed with a relatively higher ozone dosage. While in Process b, the ozonation and the activated carbon procedure is done after the filtration, by which, the ozone depleting substances will be removed therefore a lower ozone dosage than Process a. However, micro carbon particles and microorganisms which leap out of the activated carbon layer will have an undesirable impact on the quality of the outflow, so the frequent backwash on the activated carbon layer is required. Process c is characterized by a two-level ozone procedure, which means to put ozone separately before and after the sand filtration, the remaining procedures are same with Process b. A lower ozone dosage before the sand filtration is used to improve the filtration efficiency[13].

Chlorine Chlorine

image60

(a) Chlorine

image61

Подпись: (b) Chlorine Figure 3. Typical processes of BAC

(c)

Also, it is widely used in industrial waste water treatment, such as printing and dyeing wastewater, food processing wastewater, pharmaceutical wastewater, etc. Throughout the typical process of BAC treatment, it is obvious that these three technological processes are related to oxidation-BAC technology. Compared with conventional bio-chemical technology, contact oxidation-BAC process has its unique characteristics. Firstly, contact oxidation can remove organics and ammonia-nitrogen, reduce odor and the amount of DBPs precursor, as well as to reduce the regrowth possibility of bacteria in pipeline, so as to increase the biological stability. Secondly, contact oxidation can reduce the processing load

of BAC treatment, and, to some extent, increase the working life and capacity of remaining filtration and BAC, which ensure a safer, reliable outflow[14-17].