Generation and Utilization of Microbial Biomass Hydrolysates in Recovery and Production of Poly(3-hydroxybutyrate)

Jian Yu, Michael Porter and Matt Jaremko

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/52940

1. Introduction

In moving towards sustainable manufacturing with reduced carbon footprint, bio-based fuels, chemicals and materials produced from renewable resources have attracted great interest. Microbial cells, in working with other chemical and enzymatic catalysts, are often used in the conversion of feedstocks to desired products, involving different species of bacteria, yeast, filamentous fungi, and microalgae. A substantial amount of microbial biomass is generated in the industrial fermentations and often discarded as a waste. Because of a high cost associated with growth and disposal of the cell mass, reusing the microbial biomass may be an attractive alternative to waste disposal. In contrast to the biomass as energy storage (e. g. starch and oil) or plant structure (e. g. cellulose and hemi-cellulose), microbial biomass is biologically active, consisting primarily of proteins (10-60 wt%), nucleic acid (1-30 wt%), and lipids (1-15%) [1]. Few cases of reusing microbial biomass exist in industrial processes.

Poly(3-hydroxybutyrate) (PHB) is a representative polyhydroxyalkanoate (PHA) that is formed by many bacterial species as carbon and energy reserve [2,3]. Although the biopolyesters made from renewable feedstocks have the potential of replacing petroleum — based thermoplastics in many environmentally friendly applications, they are not widely accepted in the markets because of the high production cost [4]. Extensive research has been conducted to use cheap feedstocks [5,6], develop high cell density fermentation technology for high PHA productivity [7,8], and improve microbial strains that exhibit good performance under high osmotic pressure and environmental stress [9-11]. One major cost factor of PHA production is the recovery and purification of biopolyester for desired purity and material properties [4, 12]. Depending on strains and culture conditions, biopolyester may account for 50-80 wt% of cell mass [13]. They are stored in microbial cells as tiny

Подпись:© 2013 Yu et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

amorphous granules [0.2-0.5 pm in diameter] and need a sophisticated treatment to separate them from the residual cell mass [14-16]. Two technologies, based-on solvent extraction or biomass dissolution, are usually adopted in PHA recovery. With solvent extraction, the PHA granules are dissolved in appropriate organic solvents, leaving cells or residual biomass intact [17,18]. With cell mass dissolution, the PHA granules are left intact while the non-PHA cell mass is decomposed and dissolved in aqueous solutions with help of biological and/or chemical agents [19,20]. Following either treatment, PHA and non-PHA cell mass can be separated with conventional solid/liquid separations. Separating biopolyester from the cells would generate a substantial amount of residual microbial biomass, 0.25 to 1 kg dry mass per kg of PHA resin, depending on the initial PHA content. As a mixture of proteins, nucleic acids, lipids, and wall fragments, the residual biomass has no market value and is discarded at an extra disposal cost.

According to the microbial structure and cellular composition [1], the residual microbial biomass is actually consisting of true biological compounds formed during cell growth while PHA is just a carbon storage material. In a conventional PHA fermentation, sufficient substrates and nutrients (C, N, P, minerals and some organic growth factors) are supplied to grow enough cell mass that in turn or simultaneously synthesize biopolyester from carbon substrates. A large portion of organic carbons and nutrients are therefore consumed to generate new cell mass that is going to be discarded as a solid waste after polymer recovery. Ideally, the residual biomass should be reused by microbial cells to generate new cell mass and/or PHA polymers. This would not only reduce the cost of waste treatment and disposal, but also save the cost of nutrients in PHA fermentation. The bacterial cells, however, cannot assimilate their cell mass because they lack appropriate enzymes to break down various biological macromolecules and their complex structure such as cellular walls and membranes [19]. If the cells or mutants from genetic engineering could easily assimilate their structural components, they might not be suitable to industrial PHA production because the cells would undergo autolysis under high environmental stress. It is highly possible, however, to make the residual biomass reusable during PHA recovery in which the non-PHA cell mass is decomposed and hydrolyzed in aqueous solutions [20]. Integration of PHA recovery with reusing of residual biomass in microbial PHA fermentation is a novel and challenging technology. This work shows the generation of biomass hydrolysates in a downstream PHB recovery and the beneficial utilization of the hydrolysates in cell growth and PHB formation.