Combination with acid or alkaline treatment

A way to improve the effect of LHW fractionation is to add an external acid or alkali, which can catalyze the solubilisation of the hemicellulose, reduce the optimal pre-treatment temperature and gives a better enzymatic hydrolysable substrate [162-164].

Acid pre-treatments can be performed with concentrated or diluted acid. However utilization of concentrated acid is less attractive for ethanol production due to the formation of inhibiting compounds, and high acid concentration (e. g. 30-70%) in the concentrated-acid process makes it extremely corrosive and dangerous [165, 166]. Diluted acid pre-treatment appears as more favourable method for industrial applications and have been studied for fractionation wide range of lignocellulosic feedstocks, including softwood, hardwood, herbaceous crops, agricultural residues, wastepaper, and municipal solid waste. It performed well on most biomass materials, mainly xylan, but also converting solubilised hemicellulose to fermentable sugars. Of all acid-based pre-treatment methods, sulphuric acid has been most extensively studied since it is inexpensive and effective. Organic acids such as fumaric or maleic acids are appearing as alternatives to pre-treat LCF for fractionation. Organic acids also can pre-treat lignocellulosic materials with high efficiency although fumaric acid was less effective than maleic acid. Furthermore, less amount of furfural was formed in the maleic and fumaric acid pre-treatments than with sulphuric acid [167]. Phosphoric acid, hydrochloric acid and nitric acid have also been tested [34].

enzyme to the cellulose. Alkali pre-treatment can be used at room temperature and times ranging from seconds to days. It is reported to cause less sugar degradation than acid pre­treatment. It is basically a delignification process, in which a significant amount of hemicellulose is solubilised as well. Alkaline pre-treatment of lignocellulosic materials causes swelling, increasing the internal surface of cellulose and decreasing the degree of polymerization and crystallinity, which provokes lignin structure disruption, and separation of structural linkages between lignin and carbohydrates [117]. In general, alkaline pre­treatment is more effective on hardwood, herbaceous crops, and agricultural residues with low lignin content than on softwood with high lignin content [168]. Alkali pre-treatment was shown to be more effective on agricultural residues than on wood materials [169]. Addition of an oxidant agent (oxygen/H2O2) to alkaline pre-treatment (NaOH/Ca(OH)2) can favour lignin removal to improve the performance [170].