Opportunities and challenges

New products from lignocellulosic feedstock including new adhesives, biodegradable plastics, degradable surfactants, and various plastics and polymers could also be derived through the unique biotechnologies. The products with desirable properties that are not easily matched by petrochemical processing are particularly promising targets. Therefore, less price pressure would exist initially for such new products. However, to have a substantial impact on petroleum consumption, it is necessary to ensure that large markets have to be eventually resulted [20].

Even today, the potential of microorganisms for the production of bulk chemicals is far from being fully exploited. The cost of feedstocks still remains one of the crucial points if biotechnological processes are to succeed. The transition of industrial chemical production from petrochemical to biomass feedstock faces real hurdles. Biorefinery processes do not require the high pressures and temperatures compared with most non-biological chemical processes, thus have the potential to reduce costs. However, current non-biological chemical processes (often continuous, and well integrated) for production of commodity chemicals have become highly efficient by evolved through considerable investment. Therefore biorefinery processes for production of commodity chemicals must rapidly approach similar levels of efficiency and productivity. Nevertheless, available technologies, economic opportunities, and environmental imperatives make the use of lignocellulosic feedstock and biorefinery for industrial chemical production not only feasible but highly attractive from multiple perspectives [88].

Simple criteria have been devised to allow rapid screening of potential chemicals and materials from lignocellulosic feedstock for their economic merit. We now need to identify products that have economic potential and improve the technology to a point where these technologies can be applied in a cost-effective way [20].