Biogranulation treatment technology

microbial consortia packed with different bacterial species. Each biogranule consists of millions of microorganisms per gram of biomass (Weber et al., 2007), formed via biological, physical and chemical forces. According to Calleja (1984), microbial granulation is a multicellular association in a physiological state that is causing the mixture of cells into a fairly stable and contiguous structure.

The main advantages of biogranules systems are mainly due to the biogranules good settling property and the fact that biogranules are formed without the need of any biomass carrier. The relatively large size and high-density biogranules give them a rapid settling rate, which enhances the separation of the treated effluent from the biomass and results in high solid retention time (SRT) (Ahn and Richard, 2003; Liu and Tay, 2004). Due to a better settling rate, the system also shows low suspended solid content discharged in the effluent (Wirtz and Dague, 1996).

Within the biogranules, the microorganisms are closely lumped together, hence generating syntrophic associations between the cells. This relationship occurs due to optimum distances between the cells at appropriate substrate levels and such condition enables high and stable performance of metabolism activities (Batstone et al., 2004).

The granulation system is first recognized in an up-flow anaerobic sludge blanket (UASB) system characterized by anaerobic biogranules. Much research has been carried out using innovative upflow sludge bed (USB) type reactors (Bachman et al., 1985; Lettinga et al., 1997). The applications of anaerobic granulation systems have been successfully demonstrated particularly in removing biodegradable organic matter from industrial wastewaters (Lettinga et al., 1980; Schmidt and Ahring, 1996). Later the attention has also been diverted to the development and applications of aerobic biogranules. The reason has been several drawbacks that have been observed in the anaerobic biogranules system, including long start-up periods, relatively high temperature requirements and ineffectiveness in dealing with nutrient and low organic strength wastewater (Liu and Tay, 2004).

Aerobic granulation systems have been used for organics, nitrogen, phosphorus and toxic substances removal, especially high strength wastewater (Yi et al., 2008; Kishida et al., 2009).

In most cases, the system is in the form of a sequencing batch reactor (SBR) (Beun et al.,

1999; Kim et al., 2008). The reaction phase of the system has been carried out either in anaerobic, aerobic or anoxic conditions, with or without mixing, depending on the purpose of the treatment.