Daily Archives: 04.12.2015

ДРУГИЕ СПОСОБЫ ЭКОНОМИИ ЭНЕРГИИ

Хотя создание надежной теплоизоляции чердака и уменьшение сквозняков через щели окон и дверей не столь интересно и увлекательно, как сооружение систе­мы солнечного отопления или горячего водоснабжения, эти простые мероприятия на сегодняшний день намно­го эффективнее с экономической точки зрения. Анализ, проведенный в 1974 г. в Великобритании [28], дал сле­дующие значения капитальных затрат и экономии топ­лива за пятилетний период:

Расчетная стоимость Затраты, с эконом ленногр за

Подпись:фунт. ст. 5 лет топлива,

Эти цифры следует сопоставить с технико-экономи­ческими показателями системы солнечного нагрева с площадью коллектора 6 м2 (в ценах 1976 г.):

Подпись: Расчетная стоимость сэкономленного за 5 лет топлива (без учета инфляции), фунт. ст. 200 200 Стоимость уста новки, фунт, ст

Установка собственного изготов­ления (без учета трудозатрат) 180

Серийно выпускаемая установка Около 500

[1] Степень концентрации или концентрация солнечного излучени: есть отношение плотности лучистого потока на поверхности прием ника к плотности потока прямой солнечной радиации. (Прим. редjj 46

[2]

[3] Управление по исследованиям и разработкам в области энер­гетики США. Существовало по 1978 г., затем его функции были переданы созданному Министерству энергетики США. (Прим, ред.)

[4] Обычно под «коэффициентом замещения» понимают долю на­грузки, обеспечиваемую за счет солнечной энергии. (Прим. ред.)

[5] Несмотря на некоторые успехи в разработке подобных си­стем, вряд ли можно разделять этот оптимизм. {Прим, ред.)

[6] Строго говоря, термоэлектрические устройства, о которых идет речь, не являются устройствами прямого преобразования солнечной энергии в электрическую в отличие от фотоэлементов, так как в тер­моэлектрических генераторах солнечное излучение преобразуется вначале в тепло, а затем уже в электроэнергию. Заметим также, что обзор, выполненный Телкес в 1953 г., устарел. Современные солнеч­ные термоэлектрические генераторы на основе полупроводниковых термоэлементов могут иметь КПД 5—8%. (Прим, ред.)

[7] В 1980 г. фотоэлектростанция мощностью 1 МВт не была со — °Ружена, сомнительно также, чтобы мощность 10 МВт была достиг­нута к 1986 г. (Прим, ред.)

[8] К 1980 г. стоимость кремниевых фотоэлементов, выпу* скаемых некоторыми фирмами США, составляла 6—8 долл, за ! Вт пиковой мощности. (Прим, ред.)

142

ПРОВЕРКА УТВЕРЖДЕНИЙ РЕКЛАМНЫХ ПРОСПЕКТОВ

— В Великобритании до сих пор отсутствуют стандар­ты на системы солнечного нагрева и опубликовано мно­го утверждений, которые вводят в заблуждение. Напри­мер: «солнечное тепло может бесплатно удовлетворить 186

j почти всю вашу потребность в горячей воде, расходуе­мой в быту» и «солнечные панели нагреют всю воду, потребляемую средней семьей в летние месяцы, и 80% воды зимой». Такие утверждения не обязательно оши­бочны. Они могли бы стать правомерными только в том случае, если бы люди сумели коренным образом изме­нить свой образ жизни, ре­шились бы накапливать грязные тарелки, чашки,

Подпись:; блюдца, одежду и т. п. вте — 1 чение многих недель зимой,

) дожидаясь нескольких сол­нечных дней. Но даже в летние месяцы облачная погода часто держится по j нескольку дней подряд и в эти дни приход солнечной радиации, а следовательно, и теплопроизводигельность водонагревательной уста­новки будут крайне незна — ; чительны. Некоторые изго­товители действительно пу­бликуют полезные результа­ты собственных испытаний, по которым можно постро­ить типичные графики КПД коллекторов с одинарным і и двойным остеклением.

Штрихпунктирная линия на рис. 8.15 соответствует ре-

j зультатам расчетов по данным, приведенным в недавно изданном проспекте английской фирмы «Сеньор Плэйт — коил». В нем сообщается, что Льюисовский центр і NASA в Кливленде недавно завершил испытания сол­нечного коллектора. Испытания проводились при сле­дующих условиях:

интенсивность подводимого теплового потока — 945,9 Вт/м2;

скорость ветра—3,13 м/с;

остекление — два зеленых стекла толщиной 3,2 мм с Пропускательной способностью 88%;

расход воды —48,8 л/ (м2 • ч);

температура окружающего воздуха —26,7°С.

Полученные результаты, которые приведены й табл. 8.2, считаются хорошими.

Таблица 8.2

Результаты испытаний солнечного коллектора в NASA

Температура воды на входе, *С

кпд. %

Количество отводимого тепла, Вт/ма

26,7

70

663

37,8

67

634

60,0

56

530

93,3

38

359

Можно ли согласиться с утверждением, что получен­ные результаты считаются хорошими? Во-первых, следу­ет рассчитать среднюю температуру пластины коллекто­ра. Расход воды, как и количество отводимого тепла, известны, а среднее повышение температуры в коллек­торе AtK равняется количеству отводимого тепла, делен­ному на расход боды. Средняя разность температур пластины коллектора и окружающего воздуха Л£01ф рав­на (Гвх —26,7)+А/к/2. На последнем этапе расчетов нужно разделить среднюю разность температур А^0кр на плотность потока суммарной радиации (Ь= = 945,9 Вт/м2), падающей на коллектор. Результаты приведены в табл. 8.3. Точки, соединенные штрихпун-

Та блица 8.3

Результаты испытания солнечного коллектора в NASA

Температура воды на входе, °С

кпд. %

д/к. °С

д/ . °С

окр’

д t/b,

град-м*/Вт

26,7

70

11,70

5,83

0,0061

37,8

67

11,15

16,7

0,0176

60,0

56

9,33

38,0

0,0401

93,3

38

6,34

69,8

0,0738

ктирной линией на рис. 8.15, весьма близки к характе­ристике коллектора фирмы «Ханиуэлл» с двойным ос­теклением и лежат выше характеристики одного из пер­вых коллекторов Хейвуда, так что утверждение изгото­вителей, что получены хорошие результаты, вполне оп — 188

равданно. Однако подобные испытания провбдиЛйсь из­готовителями лишь для очень немногих коллекторов. Утверждения некоторых изготовителей, что в условиях Великобритании годовая экономия энергии в индивиду­альных системах горячего водоснабжения близка к 1000 кВт-ч на 1 м2 площади коллектора, никогда не подтверждались на практике.