Category Archives: BIOMASS NOW — CULTIVATION AND UTILIZATION

Results and discussion

1.2. Sequential treatment for PHB recovery

Figure 1 elucidates the sequential treatment of PHB-containing cells in a process of PHB recovery and purification. Starting with 100 dry cell mass, the cells in a slurry of 278 g DM/L were first treated in an acidic solution (0.2M H2SO4). A substantial amount of microbial proteins was released from the damaged cells, depending on temperature and time as shown in Figure 2.

image4

During the acid pretreatment, the original amorphous PHB granules became partially crystallized (data not shown here), which improved the granule’s resistance to abiotic degradation in the following treatments [20]. The biomass hydrolysates (13.4 g dry mass) dissolved in supernatant solution was discharged as acid hydrolysates. The residual PHB — containing biomass was further subjected to a base treatment by raising the slurry pH to 10.5 with a 10M NaOH solution. About 15.4 g dry mass was dissolved in the supernatant solution and discharged as base hydrolysates. After a small amount of residual biomass (2 g dry mass) was removed via oxidation with hypochlorite, the final PHB powder (69.2 g dry mass) contained 96.4 wt% PHB. The overall PHB recovery yield was 92.6%, or 7-8% PHB

was lost in repeated hydrolysis and solid/liquid separations. When a small amount of surfactant such as sodium dodecylsulfate (SDS) was added in the base treatment, the PHB purity of the final biopolyester resin could be increased to 99.4%.

image6

Figure 3. Transmission electron microscope images: microbial cells containing native PHB granules (top left), cells with damaged walls in acid pretreatment (top right), PHB granules with attached residual cell mass (bottom left), and purified PHB granules (bottom right)

Figure 3 is the electronic microscopy images of the original cells with PHB inclusion bodies, the cells with damaged porous cell walls in acid pretreatment, the PHB granules with residual cellular mass in base treatment, and the purified PHB granules after whitening and washing. It is interesting to see that the cell walls became porous in the acid pretreatment, which allowed release of proteins and other biological components in cytoplasm. The original cell structure, however, was maintained to keep the PHB granules within the damaged cells. After base treatment, the cell walls were almost completely decomposed, and a small amount of residual cell mass, probably some hydrophobic cellular components, was attached to PHB granules. After whitening and washing, the non-PHA cell mass was removed to give purified PHB granules.

Future perspectives for biomass production in the northern great plains

The Northern Great Plains has over 4 million hectares of highly erodible and saline crop land. Development of perennial biofuel crops may provide long-term sustainability on these lands by reducing soil erosion, increasing soil organic matter, reducing greenhouse gases and enhancing carbon sequestration. Although studies are on-going in long-term field experiments, the best management practices are still needed to be developed for producers. The long-term ecological and environmental benefits are also needed to be quantified in the area.

Author details

Qingwu Xue

Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, USA Guojie Wang and Paul E. Nyren

North Dakota State University, Central Grasslands Research Extension Center, Streeter, ND, USA

At-plant storage

In day-to-day management, it will be very difficult to achieve JIT delivery of any feedstock for 24/7 operation. All multi-bale handling unit concepts must include some at-plant storage. Even when known quantities of feedstock are stored in a network of SSLs, and a Feedstock Manager is controlling the deliveries, there will be delays.

To give a frame of reference, suppose 3 days of at-plant storage is the design goal. This inventory amount may suffice in the Southeast where ice and snow on the roads is not typically a significant problem for winter operations. But in the Midwest, additional days of at-plant storage will be required. A visualization of 3-day at-plant storage is shown in Figure 10. The number of racks shown is not part of the "cost analysis" example given later.

Bales will remain in the rack until processed; there is no individual bale handling at the plant. This is a very important aspect of any multi-bale handling system. This reduction in bale handling not only reduces cost, but also reduces damage to the bales. The integrity of the bales will be maintained, and bales will have additional protection from the rain since the rack has a top cover.

image52

Figure 10. Illustration of at-plant storage for the rack system. At-plant storage shown with 144 racks with bales, 5 racks on conveyor (2 full, 1 being emptied, 2 empty), and 176 empty racks.

Degradation kinetics of pollutants in BAC bed

2.2.2. Kinetics model establishment

Adopted system device is shown in Fig. 32. The relationship among microbial growth, the initial concentration of microbe and that of the substrate is the key factor to establish the degradation kinetics model. The relationship can be reflected by various models and the Monod equation is universally acknowledged as the practical model[61]. For water treatment field, the specific degradation velocity of the substrate is more practical than the specific growth velocity of microbe. Considering the specific degradation velocity of the substrate according to the physical law, the equation below is founded[62]:

Подпись: (3)_ dC = v XC

dt max Ks + C

Wherein, stands for the degradation velocity of organic substrate; C stands for residual dt

organic substrate concentration in mixed liquor after a reaction time t; Ks stands for saturated constant; vmax stands for the max specific degradation velocity of organic substrate.

In the equation, C is the key factor for calculating kinetic equation. When Ks > C, the equation below is founded:

Подпись: (4)_ — = k, XC
dt 1

When Ks< C, the equation below is founded:

_ A = k2X

dt 2

image92

Figure 32. Illustration of material balance

Taken X (biomass) as horizontal coordinate and dL as vertical coordinate, if the diagram

obtained is linear, the model belongs to high matrix organic degradation, while if the diagram is in exponential form, the model belongs to low matrix organic degradation.

As both BAC and BCF have a homologous microbial characteristic, by drawing an analogy with the degradation model of BCF, the BAC biodegradation effect can be described. According to the experimental system, material balance can be established which is shown in Fig. 32.

As shown in Fig.32, according to material balance law, along the section, the equation below is founded:

f 1 A

f 2 A

f 3 a

QC0 = Q

C + ЕЩ 1 = Q

C2 +ZAC; 1 = Q

C3 +ТЩ 1 = Q

1 i=1 )

1 i=1 )

1 i=1 )

In which AC can be calculated by each C of all the sections, A t can be calculated by the height of filter through each section and the filter velocity; the biomass of each BCF section represented by X can be measured, hence, taking biomass as the horizontal coordinate, ACi/A tof each section as the vertical coordinate to conduct linear regression analysis so as to determine the type of biodegradation model.

Conclusions

The intensity and concentrated activity of the livestock industry generate huge amounts of biodegradable wastes, which must be managed with appropriate disposal practices to avoid a negative impact on the environment. Composting is one of the best-known processes for the biological stabilization of solid organic wastes under aerobic conditions. Vermicomposting, i. e. the processing of organic wastes by earthworms under aerobic and mesophilic conditions, has also proven to be a low-cost and rapid technique. Although aerobic processes are thermodynamically more favorable, the manure treatment by anaerobic digestion has become increasingly important due to its energetic potential. A stabilised end product that can be used as an organic amendment is obtained under both aerobic and anaerobic conditions. A multi-parameter approach applying diverse methods constitutes the best option for evaluating the stability/maturity degree of the organic matter, which is of utmost importance for its safe use for the agriculture and the environment. During biodegradation all organic matter goes through the microbial decomposer pool and thus, further knowledge about the changes occurring during the process from a microbial viewpoint will contribute to further develop efficient strategies for the management of animal manures.

3. Outlook

Waste management continues to be a topic of increasing importance. Deeper knowledge of the different biological processes involved in the recycling and recovery of waste components is thus of utmost importance in order to contribute towards more sustainable production and consumption systems. For example, biowaste may be used as a resource to produce high quality lactic acid and protein, as well as biogas in a cascade procedure. Briefly, biowaste is separated into two phases, i. e. a solid phase that is used to feed Hermetia illucens larvae that may be harvested as an excellent source of protein for feeding chicken or fish, and the liquid phase that is microbially fermented to the platform chemical lactic acid.

The remaining residuals may eventually be used for biogas production, a cascade process that utilizes the organic waste at its highest level. Furthermore, although an interest in vermicompost research and technology has been increasing over recent years, and the body of knowledge available is quite large, there are still some important topics to be investigated. During vermicomposting, earthworm activity helps microbial communities to use the available energy more efficiently and plays a key role in shaping the structure of the microbial communities during the process. Hence, it is of future interest to evaluate whether the changes in the composition of microbiota in response to earthworm presence are accompanied by a change in the microbial community diversity and/or function. Ultimately, this knowledge will help us to understand the functional importance of earthworms on the stabilization of organic matter from a microbial viewpoint, thereby contributing to minimize the potential risks related to the use of animal manures an organic amendments.

Enzyme production using sugarcane bagasse

Cultivation of microorganisms in agroindustrial residues (such as bagasse) aiming the production of enzymes can be divided into two types: processes based on liquid fermentation or submerged fermentation (SmF), and processes based on solid-state fermentation (SSF) [5]. In several SSF processes bagasse has been used as the solid substrate. In the majority of the processes bagasse has been used as the carbon (energy) source, but in some others it has been used as the solid inert support. Cellulases have been extensively studied in SSF using sugarcane bagasse. It has been reported the production of cellulases from different fungal strains [5].

Several processes have been reported for the production of enzymes using bagasse in SmF. One of the most widely studied aspects of bagasse application has been on cellulolytic enzyme production. Generally basidiomycetes have been employed for this purpose, in view of their high extracellular cellulase production. A recent example was the use of Trichoderma reesei QM-9414 for cellulase and biomass production from bagasse. Additionally, white-rot fungi were successfully used for the degradation of long-fiber bagasse. Most of the strains caused an increase in the relative concentration of residual cellulose, indicating that hemicellulose was the preferred carbon source [5].

Coppice with standards and high forest management in Austria

High forest (HF) and Coppice with standards (CS) are the most common silvicultural management systems for broadleaved forest ecosystems in northeastern Austria. These systems have evolved over a long period of traditional management and they are mainly determined by environmental conditions and economic considerations. However, these systems were locally adapted over time, resulting in a range of intermediate types. Divergent silvicultural structures with diffuse standards are the consequence and are very common in Austria [39].

Quercus dominated high forests aim at producing quality timber with a diameter of at least 30 cm (diameter at breast height (DBH)). Rotation periods are approximately 120 years, followed by shelterwood cuts and natural regeneration. It is one of the most common systems in central Europe and suitable for most species. The rotation period is set according to the dominant or most economically significant species and it is usually shorter for coniferous species (~100 years). The most important difference in comparison to other management systems is the type of regeneration, which in the case of high forest is entirely generative. Generative regeneration may be introduced by shelterwood cuts or similar silvicultural systems, or by planting, while natural regeneration is usually preferred as a consequence of costs and genetic compatibility issues (e. g. climate) and uncertain provenance. Shelterwood cuts promote generative regeneration via seeds when the canopy is opened. Individuals with high quality (i. e. straight stem) may be chosen to initiate regeneration, which implies genetic selection to a certain extent. Thinning is typically performed 4 times, at 30, 50, 70 and 90 years. The main silvicultural goal is to produce straight logs with a minimum number and size of ingrown branches, as a raw material for woodwork, veneer and other similar purposes. Thinning operations and harvesting residues provide biomass for energetic utilization. Individual generative stems might be considered as a source of woody biomass for energetic utilization as well, if they do not meet requirements in terms of quality.

Quercus-Carpinus coppice with standards is a woodland management system to produce biomass for energetic utilization. These forests were once the main source of thermal energy when producing fuelwood for direct burning or charcoal production. There is evidence of coppice management dating back approximately 400 years in this region of Austria [40]. The management goals shifted during this period, depending on the demands of the landowners. CS is a relatively flexible system regarding supply of different qualities and quantities of wood. Among coppice, some trees are left in four age-classes to grow as larger size timber, called "standards". While standards provide a certain share of higher quality logs for trades, coppice provides fuelwood. Standards typically result from genetic regeneration. This multi-aged traditional system supports sustainable production of timber and non-timber forest products, while enhancing ecosystem diversity and wildlife habitat

[41] , which is also highlighted in the similar Japanese management system of Satoyama [33]. The rotation period for coppice (understorey) is typically 30 years [39, 42], hence holding a middle position between planted short rotation woody crops (SRWC) [35] and traditional high forests. The system is characterized by cyclic vegetative and generative regeneration

[42] . Sprouting occurs rapidly after harvest and standards provide shade and are a source for seeds as backup if sprouting is not successful. Individual standards are managed in four age classes (30-60, 60-90, 90-120, and 120+ years) and harvested depending on certain criteria (e. g. market value, tree health, stand density). However, their importance began to cease with the introduction of fossil sources of energy during the onset industrialization, but significantly after 1960 [39]. Declining fuelwood demands led to a reduced intensity of understorey harvests (coppicing) and a shift towards longer rotation periods. This trend is especially distinct on fertile sites, while coppice was tendentially retained on sites with lower fertility.

The parent material of soils in our study region consists of gravel, sand and silt built up during the Pannonium (between 7.2 and 11.6 Ma before present) resulting from early formation of the Danube River. Consequently, a variety of soils can be found, e. g. Cambisols, Luvisols, Chernozems and even Stagnosols. Younger aeolian deposits of loess (Pleistocene) led to periglacial formation of Chernozems. The soils of our chronosequence series are classified as Eutric Cambisol with a considerable amount of coarse material (< 40% volume) in HF and sandy clay loam texture and both Haplic and Vermic Chernozems with loamy texture in CS [43]. Soils with lower fertility are derived from gravel and sand of the Danube River development, while Chernozems are derived from loess. The region receives approximately 500 mm of precipitation annually, with irregular periods of drought during summer. The water holding capacity of soils with a considerable amount of coarse material is lower as compared to loess derived soils, hence vegetative regeneration has the advantage of a fully functional root system at all times, supporting successful regeneration even in periods of drought. Generative regeneration might be obstructed under such conditions as a consequence of drying topsoil horizons. In our case study, we were able to include an outgrown coppice plot (i. e. a coppice with standards system that was not harvested at the theoretical end of the rotation period) aged 50 years to widen the scope for temporal dynamics. Irregular harvesting of standards and rotation periods up to 50 years (outgrown coppice) led to divergent silvicultural structures with diffuse standards [39], as previously mentioned. The plots were established during the summer of 2007 as permanent sample plots for aboveground biomass monitoring and are part of a framework to investigate biomass and carbon pools in this region [44].

Power performance of harvest machine systems

Machine system field efficiency is limited by tractor power performance, machine field capacity, and field conditions. Field conditions limit operational parameters and the percentage of the maximum available power. Since the high cost of harvest and in-field handling is still one of the main roadblocks of utilizing biomass feedstocks to produce biofuels, increasing machine system field efficiency through designing or selecting suitable machine systems is the challenge to machinery design and management professionals.

Power performance of a 2WD rear drive tractor was presented in a format of flow chart in ASAE standards [12,15]. Total power required for a tractor is the sum of PTO power (Ppto), drawbar power (Pdb), hydraulic power (Phyd), and electric power (Pei) as expressed by equation (1). Depending on the type of implement, components in equation (1) may vary. Total power calculated with equation (2) is defined as equivalent PTO power, which can be used to estimate the tractor fuel consumption under specific field operations.

?T=S+ PPto+Phyd+Pel (1)

Where Em and Et are mechanical efficiency of the transmission and tractive efficiency, respectively. Each of the power requirements in Equation (1) can be estimated using recommended equations in [12]. Example of using this standard to estimate power requirements for a large rectangular baler system is available [13].

Biological Activated Carbon Treatment Process for Advanced Water and Wastewater Treatment

Pengkang Jin, Xin Jin, Xianbao Wang, Yongning Feng and Xiaochang C. Wang

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/52021

1. Introduction

The development of biological activated carbon (BAC) technology is on the basis of activated carbon technology development. Activated carbon which is used as a kind of absorption medium plays an important role in perfecting the conventional treatment process. Furthermore, activated carbon technology becomes one of the most mature and effective processes to remove organic contaminants in water. Removal of the odor in raw water can be regarded as the first attempt of activated carbon which can play a part in water treatment. The first water treatment plant in which granular activated carbon adsorption tank used was built in 1930 in Philadelphia, United States[1]. In the 1960-1970s, developed western countries started to use activated carbon technology in potable water treatment to enhance the removal of organic contaminants. By then, prechlorination was commonly used as the first step of activated carbon treatment. As the inflow of carbon layer contained free chlorine, the growth of microorganism was inhibited and no obvious biological activity showed in the carbon layer.

In order to improve the removal efficiency of refractory organics, especially the removal of precursors of DBPs, ozonation is commonly used in preoxidation before activated carbon process. The process which combines ozonation and activated carbon treatment was firstly put into practice in the year of 1961 at Amstaad Water Plant in Dusseldorf Germany. The successful trial in Dusseldorf soon arose great attentions from the engineering field in Germany as well as the Western Europe[2]. The advantages of microorganisms growing in the activated carbon layer was first affirmed by Parkhrust and his partners in 1967[34], this demonstration enabled the lengthening of the GAC’s (Granular Activated Carbon) operation

life to a great extent and Ozonation-Biological Activated Carbon technology was finally established. Since early 1970s, the study and application of Ozonation-Biological Activated Carbon treatment were conducted in large scales, among which the major ones are as the followings: the application in water plant of Auf dem Weule, Bremen Germany on a half productive scale[5] and the application in Dohne water plant of Muelheim Germany on productive scale[6]. The successful application of Ozonation-Biological Activated Carbon technology in Germany is widely spread and used in neighboring countries, and the treatment itself was perfected gradually. In late 1970s, the treatment was popularized in Germany. In the year of 1976, the United States Environmental Protection Agency (US EPA) legislated that the activated carbon process must be adopted in potable water treatment process in urban areas with a population over 150,000. Among the water plants using activated carbon treatment, the most representative ones are: Lengg Water Plant in Switzerland[7] and Rouen La Chapella Water Plant in France[89], see Fig. 1. the flow diagram. The BAC process was firstly proposed in 1978 by G. W.Miller from the US and

R. G.Rice from Switzerland[9]. In 1988, the quality requirements for potable water were improved in Japan and during the years 1988-1992, Kanamachi, Asaka, Kunijima and Toyono water treatment plants using the Ozonation-Biological Activated Carbon process

were built[10].

image58

Figure 1. Flow diagram of the water plant in Rouen La Chapella

By now, BAC process has become the major process in advanced water treatment, which is commonly used in developed countries such as America, Japan, Holland, Switzerland, etc[1]. Meanwhile, the process is also widely used in industrial wastewater treatment as well as waste water reclamation. According to the prediction of experts, because of the increasing seriousness of the pollution in potable water and the strictness of requirements for potable water quality, the BAC process which combines the functions of physical-chemical absorption and biological-oxidation degradation, will become the conventional process widely used in potable water treatment plant[9].

2. Composition of biological activated carbon process

2.1. Composition and application

2.1.1. Basic principles of biological activated carbon technology

Biological Activated Carbon process is developed on the basis of activated carbon technology, which uses the synergistic effect of adsorption on activated carbon and biodegradation to purify raw water. Activated carbon has a high specific surface area and a highly developed pore structure, so it is characterized by its great effect on absorbing dissolved oxygen and organics in raw water. For Biological Activated Carbon technology, activated carbon is used as a carrier, by accumulating or artificially immobilizing microorganisms under proper temperature and nutrition conditions, the microorganisms will reproduce on the surface of the activated carbon and finally form BAC, which can exert the adsorption and biodegradable roles simultaneously[11]. The Biological Activated Carbon technology consists of the interaction of activated carbon particles, microorganisms, contaminants and the dissolved oxygen, in water solution. Fig. 2. shows the simplified model that how the 4 factors interact with each other[12]. The relationship between the activated carbon and contaminants is simply the effect of adsorption of activated carbon, and the reaction depends on the properties of the activated carbon and contaminants. Meanwhile, the activated carbon can adsorb DO and microorganisms which were adsorbed on the surface of activated carbon, feed on DO will biodegrade contaminants. In brief, by the interaction of these 4 factors, the purpose for removing contaminant from raw water can be achieved by adopting the biological activated carbon.

A

image59

D

Figure 2. Simplified interaction model of factors in BAC process

Removal of Carbon and Nitrogen Compounds in Hybrid Bioreactors

Matgorzata Makowska and Marcin Spychata

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/53582

1. Introduction

Biological wastewater treatment methods allow to remove pollutants at high efficiency but they require application of modern knowledge and technology. In bioreactors used for carbon and nutrients removal from wastewater two forms of biomass are utilized: a suspended biomass (dispersed flocs) and an attached biomass (biofilm). The latter needs a carrier on surface which it can grow.

Both types of biomass, despite some similarities, show also many differences. Probably as a result of complex relations (competition, migration, physical factors like flow velocity and biochemical factors like oxygen supply) the flocs and attached biomass can demonstrate many differences, e. g. texture, active surface, heterotrophs and autotrophs ratio, and especially biomass age. A compilation of these two technologies in one hybrid reactor allows to utilize advantages of these technologies and to achieve high carbon and nitrogen removal efficiency. The additional advantages of this new technology (moving bed biological reactor — MBBR; other similar terms: Integrated Fixed Film/Activated Sludge — IFAS, Mixed-Culture Biofilm — MCB) are cost savings and reactor volume reduction. Simultaneous processes maintenance (SND reactor) and specific parameters preservation enable treatment of specific wastewater.