Category Archives: BIOMASS NOW — CULTIVATION AND UTILIZATION

Novel multienzyme complex system from P. curdlanolyticus strain B-6

Efficient enzymatic degradation of lignocellulosic biomass requires a tight interaction between the enzymes and their substrates, and the cooperation of multiple enzymes to enhance the hydrolysis due to the complex structure. Multienzyme complexes, cellulosomes from anaerobic cellulolytic microorganisms, are dedicated to hydrolyzing lignocellulosic substances efficiently because of a large variety of cellulases and hemicellulases in complexes, useful enzymatic properties, and binding ability to insoluble cellulose and/or xylan via CBMs (Bayer et al., 2004; Doi and Kosugi, 2004; Schwarz et al., 2001; Shoham et al., 1999). When compared with aerobic enzymes, they produce several individual enzymes, but microorganisms are not binding to insoluble substrates. However, P. curdlanolyticus B-6 was found to produce a multienzyme complex under aerobic conditions (Pason et al., 2006a, 2006b). Little information has been reported on cellulosome-like multienzyme complexes produced by aerobic bacterium (Kim & Kim, 1993; Jiang et al., 2004; van Dyk et al., 2009). Therefore, the multienzyme complex produced by strain B-6 is critical for improving plant biomass degradation.

Materials and methods

1.1. Microbial cultures

A laboratory strain of Ralstonia eutropha maintained on agar slant was used in this work. The agar medium contained (per liter): 5 g yeast extract, 5 g peptone, 2.5 g meat extract and 15 g agar. A 16S RNA analysis indicates that the strain has 100% alignment with Ralstonia eutropha H16. The cells were cultivated in 200 mL mineral medium containing: 160 mL glucose mineral solution, 8 mL inoculum, 5-20 mL solutions of residual microbial biomass

hydrolysates, and the rest pre-sterilized water. The glucose mineral solution contained (per liter): 12 g glucose, 2 g NaHzPCk, 2.8 g K2HPO4, 0.5 g MgSO4.7H2O, 1 g (NH4)zSO4 and 1 mL trace solution [21]. The culture solution was shaken in a 500 mL baffled flask at 30 oC and 200 rpm in a rotary incubator for 24 or 48 hours. Cell mass was harvested from 50 mL medium with centrifugation at 5,000 g for 10 min and freeze dried for measurement of cell mass concentration and PHB content.

A large amount of PHB-containing cell mass for biopolyester recovery was produced with a fed-batch culture in a 3L bench-top bioreactor (BioFlo 110, New Brunswick Scientific Co.

NJ). The temperature, pH and dissolved oxygen were controlled at 30 oC, 6.8, and 10% air situation, respectively. A feed solution prepared with a sugar manufacturing byproduct containing about 50% sucrose was introduced into the bioreactor till the cell density reached 130 g/L and PHB concentration 94 g/L (72% PHB of cell mass). The cell mass was harvested with centrifugation and re-suspended in an acidic water (0.2M H2SO4) to make a cell slurry of 278 g dry mass/L. The slurry was reserved for later use.

Harvest management

Proper harvest management is important for biofuel crops for high yields and ideal qualities. The harvest management practices include harvest frequency, timing and stubble height. Currently, most studies for harvest management are focused on switchgrass [29, 69, 73]. Although switchgrass can be harvested in 2 times a year in south part of USA [73, 74], swithcgrass in NGP can only be harvested once a year either after anthesis (summer) or killing frost (fall). For maximizing the biomass yields and chemical compositional attributes for biofuels, harvesting in killing frost is an ideal harvest management [29]. Another harvest practice in the NGP is harvesting every other year (biennial harvest). Comparing annual harvest and biennial harvest, average annual biomass yield is generally lower for biennial harvest. The only benefit for biennial harvest is reducing machine operation cost. However, biennial harvest improved the switchgrass stand health if harvested in summer [29]. The reduction of annual biomass yield in biennial harvest was related to species and mixtures in our long-term field study. The reduction in annual biomass yield due to biennial harvesting ranged between 20 to 50 percent. In general, biomass yield of intermediate wheatgrass reduced the most in biennial harvest. However, there was one dryland site that Sunburst switchgrass + Altai wildrye had higher yield on the biennial harvest [11, 75]. Cutting height during harvest also affect biomass yield in perennial grasses. In general, lower cutting stubble resulted in higher biomass yield than higher cutting [75].

Receiving facility

When a truckload of feedstock arrives at the bioenergy plant, what happens? Does this material go directly into the plant as in a just-in-time processing model? Or, does it go into some type of at-plant storage? If it goes into at-plant storage, is there an efficient procedure for placing it into storage and retrieving it? All these questions relate directly to the cost of Receiving Facility operations, thus, when a bioenergy plant commissions a logistics system, it first specifies how it wants to receive material. Key questions for a receiving facility are:

1. Do I want each load to be the same size with the truck loaded the same way (i. e. are bales need to be in the same configuration)?

2. What are the hours of operation, and can I schedule approximately the same number of deliveries each hour of the workday?

3. What size at-plant storage must be maintained?

Design of a receiving facility is beyond the scope of this chapter; but, it is hoped that by posing these questions, the reader will begin to think about the constraints that a bioenergy may have when specifying a logistic system. Two criteria used in this example are:

1. Weigh and unload a truck in 10 min, and

2. Cost effective flow of material in-and-out of at-plant storage to support 24/7 operation.

Design of a logistics system is directly linked to the design of the receiving facility — neither is designed independent of the other.

Analysis of biological activity

The basic idea of in situ substrate uptake rate detection method[5859] is to converse time — variant variables into space-variant variables. First assumption is to consider matrix concentration as a differential function of filter bed height; the second assumption is that under proper conditions, any of the micro-unit taken from the inner-filter bed can achieve stability. Through the total differential method or the law of conservation of mass, the final expression of matrix degradation velocity can be determined, at this point, the law of conservation of mass is applied, for its intuitionism.

As shown in Fig. 25, under a constant living environment for microbe, in situ oxygen uptake rate (ISOUR) can be described as the oxygen consumption of microbe grown on filter materials per unit time and volume (written as R, mg/(L-h)). Consider the filter porosity in filter column as e, mass concentration of DO in inflow and outflow are p(DOi) and p(DOe) respectively, taking wdh as the micro-unit taken from depth of h in bio-filter bed (w is section area of filer column, m2), and the variation in DO caused by the effect of microbe inside the micro-unit can be described as R(1-e)wdh, according to the law of conservation of mass:

Подпись: (1)Подпись:(p(DOi) — p(DOe))Q — R (1 — e )®dh = 0

ISOUR can be described as

dC

dt

In this equation: Q stands for the quantity of water through the filter column, m3/h; v stands for the filter velocity, m/h;

dp( DO)
dh

image85

stands for the gradient of DO at a height of h, along the filter variation height curve. As far as the aerobic biological treatment concerned, the biodegradation velocity on organic matrix is in proportion to its ISOUR. With abundant DO in BAC and BCF filter columns, the breeding microbe is mostly aerobic bacteria. Therefore, by calculating the oxygen consumption rate in the process of treating organics by BAC and BCF filter columns, the respective biological activity can be determined to analyze and evaluate the effect of biodegradation of BAC column.

Influence of vermicompost amendments on the soil microbiota

As occurred with compost amendments, vermicompost has also been found to provide manifold benefits when used as a total or partial substitute for mineral fertiliser in peat — based artificial greenhouse potting media and as a soil amendment in field studies [95]. Among the advantages of vermicompost as a soil amendment is its potential to maintain soil organic matter, foster nutrient availability, suppress plant diseases and increase soil microbial abundance and activity. However, although several studies have tried to disentangle the complex interactions between vermicompost application and soil microbial properties, most of them are frequently not comparable to each other due to differences in the experimental design, the land-use and vermicompost type (i. e., different starting material and earthworm species), the dose of application as well as the duration of experiments, among others. Despite these limitations, some recent findings have been made, thereby contributing to better understand whether and to what extent vermicompost amendments affect soil microbial biomass, activity and community structure. For instance, Arancon et al. [96] observed that a single application of vermicompost to a strawberry crop resulted in a significantly higher increase in soil microbial biomass than the application of an inorganic fertiliser, regardless of the dose used. Increases in the microbial activity and in the activity of the soil enzymes involved in the release of the main plant macronutrients with vermicompost amendments, have also been signalled in several studies [96-98]. Such increase could be due to the fact that soil microorganisms degrade organic matter through the production of a variety of extracellular enzymes and, in turn an input of organic matter is expected to be accompanied by a higher enzymatic activity. Moreover, the added material may contain intra — and extracellular enzymes and may also stimulate microbial activity in the soil [99]. Additionally, vermicompost has been found to promote the establishment of a specific microbial community in the rhizosphere different from that of plants supplemented with mineral fertilisers or other types of organic fertilisers such as manure [100]. Inorganic fertilisation only supplies N, P and K, whereas organic fertilisers also supply different amounts of C and macro — and micronutrients, which can select for microbial communities with different nutritional requirements [95]. Moreover, microbial communities in vermicompost are metabolically more diverse than those in manure [17], and may be incorporated, at least in the short-term, to soils [101]. Interestingly, Aira et al. [100] observed that the effect of the addition of vermicompost occurred despite the low dose used (25% of total fertilisation), and despite the short duration of the experiment (four months). Jack et al. [102] also examined how different organic transplant media amendments, including vermicompost, thermogenic compost and industry standard amendments affected the rhizosphere bacterial communities of organically produced tomato plants. They found differences in the bacterial community structure between the different amendments and these differences persisted for at least one month after seedlings were transplanted to the field. Since both compost and vermicompost were made from the same parent material, such differences could be due to the way in which the organic matter was processed prior to the amendment [102]. Previous comparisons between vermicompost and compost with respect to microbial communities [103-105] are difficult to interpret because different feedstocks were used for each process. Compost feedstocks are known to alter the material’s effects on the structure of the microbial communities [86], so it is essential to use composts made from the same feedstock in order to draw valid comparisons between the two biological processes. Furthermore, it may be expected that different hybrids or plant genotypes will respond differently to vermicompost, considering that plant genotype determines important differences in nutrient uptake capacity, nutrient use efficiency and resource allocation within the plant. Different genotypes may therefore enhance root growth or modify root exudation patterns in order to increase nutrient uptake [100], and all of these strategies will determine the establishment of different interactions with the microbial communities at the rhizosphere level. Indeed, after the application of vermicompost to sweet corn crops, these authors found important differences in the rhizosphere microbial community of two genotypes from cultivars of maize, with the sugary endosperm mutation (sul) and with the shrunken endosperm mutation (sh2), which differ in their C storage patterns.

Furthermore, recent studies have demonstrated the presence of various bacteria, which are useful for different biotechnological purposes, in diverse vermicomposts [106-107], reinforcing that the biological component (i. e., the microbial community composition) of a vermicompost largely determines its usefulness in agriculture and other applications, such as soil restoration and bioremediation. For instance, Fernandez-Gomez et al. [106] detected the presence of Sphingobacterium, Streptomyces, Alpha-Proteobacteria, Delta-Proteobacteria and Firmicutes in diverse vermicomposts, irrespective of the parent material used for the process, by applying DGGE and COMPOCHIP, thereby demonstrating the usefulness of both techniques to assess the potential of vermicomposts as bioactive organic materials. Indeed, disease suppressiveness is obviously linked to the microbiota added with the vermicompost, along with the biological and physicochemical characteristics of the native soil microbial community. However, despite the large body of scientific evidence showing the positive effects of vermicompost regarding the suppression of soil-borne plant fungal diseases (reviewed in [75,108]), it is still necessary to obtain a deeper understanding of the mechanisms involved and the main factors influencing such suppressing effects. According to the mechanisms proposed for compost [68-69], disease suppression by vermicompost may be attributed to either direct effects or to the induction of systemic resistance in the plant. Direct suppression of the pathogen by the vermicompost-associated microflora and/or microfauna may be general or specific, depending on the existence of a single suppressive agent or the joint action of several agents, and the proposed mechanisms are competition, antibiosis and parasitism. Some of the indirect effects of vermicompost have been related to changes in the microbiological properties of the soil or the potting media. Processing by earthworms during vermicomposting has a strong effect on the microbial community structure and activity of the initial waste [8]. Vermicompost therefore has a rather different microbial community structure than the parent waste, with lower biomass but enhanced metabolic diversity [18]. Application of such a microbiologically active organic substrate may thus have important effects on the microbial and biochemical properties of soil or greenhouse potting media thereby influencing plant growth. Moreover, vermicompost may affect directly the plant growth via the supply of nutrients, as it constitutes a slow-release fertiliser that supplies the plant with a gradual and constant source of nutrients, and/or through the supply of plant growth regulating substances [95].

Lignin

Lignin is a phenolic polymer made of phenylpropanoid units [13], which has the function to seal the secondary cell wall of plants. Besides providing waterproofing and mechanical reinforcement to the cell wall, lignin forms a formidable barrier to microbial digestion. Lignin is undoubtedly the most important feature underlying plant biomass architecture. Sugarcane bagasse and leaves contain approximately 18-20% lignin [13]. The phenolic structure of this polymer confers a material that is highly resistant to enzymatic digestion. Its disruption represents the main target of pretreatments before enzymatic hydrolysis.

2. Pretreatment

The pretreatment process is performed in order to separate the carbohydrate fraction of bagasse and other residues from the lignin matrix. Another function is to minimize chemical destruction of the monomeric sugars [6]. During pretreatment the inner surface area of substrate particles is enlarged by partial solubilization of hemicellulose and lignin.. This is achieved by various physical and/or chemical methods [5]. However, it has been generally accepted that acid pretreatment is the method of choice in several model processes [7]. One of the most cost-effective pretreatments is the use of diluted acid (usually between 0.5 and 3% sulphuric acid) at moderate temperatures. Albeit lignin is not removed by this process, its disruption renders a significant increase in sugar yield when compared to other processes [1]. Regarding sugarcane bagasse several attempts have been made to optimize the release of the carbohydrate fraction from the lignin matrix, including dilute acid pretreatment, steam explosion, liquid hot water, alkali, peracetic acid and also the so called ammonia fiber expansion (AFEX).

3. Hydrolysis

Cellulose and hemicellulose fractions released from pretreatment has to be converted into glucose and other monomeric sugars. This can be achieved by both chemically — or enzymatically — oriented hydrolysis [7, 8].

Biomass production and carbon sequestration

Terrestrial C sequestration accounts for approximately one quarter of the three main sinks as indicated in Figure 2, where forests contribute the largest share. An intact terrestrial sink might be more important in the future in terms of mitigating climate change, since the ocean
sink is expected to decrease. Our current forests are capable of sequestering ~2.4 Pg C yr-1 (of 2.6 Pg in total), when excluding tropical land-use change areas [10]. Sequestration of C in forests is controlled by environmental conditions, disturbance and management. However, forests can principally act as a source or sink of C, depending on the balance between photosynthesis and respiration, decomposition, forest fire and harvesting operations. On both European and global scales, forests were estimated to act as sinks on average over the last few decades [11, 12].

The most important process of net primary production is achieved by photosynthesis, which is the chemical transformation of atmospheric CO2 and water from the soil matrix into more complex carbohydrates and long chain molecules to build up cellulose, which is found in cell walls of woody tissue as well as hemicellulose and lignin. The C remains in the woody compound either until it is degraded by microorganisms, which use the C as source of energy, or until oxidation takes place (e. g. burning biomass, forest fire). In both cases, it becomes part of atmospheric CO2 again. A certain share, controlled mainly by climatic conditions [13], enters the soil pool as soil organic carbon (SOC). The ratio between aboveground and belowground pools depends on the current stand age, forest management and climate. In temperate managed forests, SOC stocks are typically similar to the aboveground stocks [14], which is confirmed in our own research [13]. SOC (and in particular O-horizon) stocks are typically higher in boreal forests and in high elevation coniferous forests as a consequence of reduced microbial activity and much lower in tropical environments. O-layer C pools are especially sensitive to changes in local climate. A traditional forest management regime in Austrian montane spruce forests is clear-cutting, typically from the top of a hill to the valley to facilitate cable skidding. An abrupt increase of radiative energy and water on the soil surface creates favourable conditions for soil microorganisms and a great amount of C stored in the O-layer will be released to the atmosphere by heterotrophic respiration. Other GHG’s, such as N2O are eventually emitted under moist and reductive conditions as excess nitrogen is removed by lateral water flows. Unfortunately, this effect is likely to happen on a large-scale where massive amounts of C might be released as the global temperature rises and thawing permafrost induces C emissions [15], potentially creating a strong feedback cycle, further accelerating global warming. However, Don et al. [14] found that SOC pools were surprisingly stable after a major disturbance (wind throw event), indicating low short-term vulnerability of forest floor and upper mineral horizons. They explained their findings with herbaceous vegetation and harvest residues, taking over the role of litter C input. The study covers a time-span of 3.5 years which might be too short to observe soil C changes. Likewise, we did not observe significant C stock decrease in our youngest sample plot of the coppice with standards (CS) chronosequence [13]. We expect that the N dynamics might have a profound influence on C retention and the impact of disturbance on SOC pools depends on environmental conditions. Successful long-term sequestration in terms of climate change mitigation is therefore only achieved if C becomes part of the recalcitrant fraction in the subsoil, which is typically between 1 000 and 10 000 years old [16, 17]. The C concentration is lower in the subsoil, but considerable amounts can still be found if one not only analyses the topsoil layer as recommended by a number of authors, e. g. by Diochon et al. [18]. In contrast, the radiocarbon age of the topsoil may range from less than a few decades [17] to months if considering freshly decomposed organic matter. The reasons for the relatively high age in subsoil horizons are not clear, but unfavourable conditions for soil microbial diversity and strong association of C with mineral surfaces (organo-mineral interactions with clay minerals) might be an explanation [16]. There are, in principal, two pathways for sequestering C in forest soils. Forest litter consists of leaves, needles and woody debris; such as branches, bark and fruit shells which accumulate on the surface (L and F layer). Soil macrofauna degrades it until it becomes part of the organic matter (OM) where it is impossible to recognize its original source (H layer). Parts of it are translocated into deeper horizons by bioturbation (e. g. earthworms) or remain on the surface, to be further degraded by soil microorganisms while organic matter becomes mobile in the form of humic acids and subsequently being mineralized at a range of negatively charged surfaces (humus, clay minerals). The second pathway is through root turnover and rhizodeposition (= excretion of root exudates). Matthews and Grogan [19] and subsequently Grogan and Matthews [20] parameterized their models with values of between 50 and 85% of C from the fine root pool which is lost to the SOC pool on an annual basis, depending on species composition and management. This assumption is consistent with another study where 50% of the living fine roots were assumed to reflect real values [21]. There is evidence that C derived from root biomass [22] and mycorrhizal hyphal turnover [23] might be the most important source for SOC pools rather than from litter decomposition. Since fine root turnover is species specific [24], it could be controlled to some extent by species composition at management unit levels. A further question for a forest owner in terms of carbon sequestration is which management option to choose while still being able to produce products and generate income. Despite the fact that unmanaged forests hold the highest C pools, it was commonly believed that aggrading forests reach a maximum sequestration and it is reduced in old growth forests, where photosynthesis and autotrophic respiration are close to offsetting each other. This is contrasts a number of studies, pointing out that even unmanaged forests at a late successional development stage could still act as significant carbon sinks [25]. The authors of another study claim that advanced forests should not be neglected from the carbon sequestration discussion a priori [26] and they should be left intact since they will lose much of their C when disturbed [27]. Therefore, managing forests implies a trade-off between maximum C sequestration and provision of goods, such as timber and biomass for energetic utilization. While the highest amounts of carbon could be sequestered in unmanaged forests [27, 28], C sequestration through forest management can be a cost-effective way to reduce atmospheric CO2, despite limited quantities, due to biological limitations and societal constraints [29]. This is in general agreement with the conclusion of Wiseman’s [30] dissertation, who argues that there is potential for additional C uptake depending on forest management, but the effect is short-term until a new equilibrium in C stocks is reached and also argues that the effect may be limited.

Harvest Systems and Analysis for Herbaceous Biomass

Jude Liu, Robert Grisso and John Cundiff

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/53875

1. Introduction

Biomass is a distributed energy resource. It must be collected from production fields and accumulated at storage locations. Previous studies of herbaceous biomass as a feedstock for a bioenergy industry have found that the costs of harvesting feedstocks are a key cost component in the total logistics chain beginning with a crop on the field and ending with a stream of size-reduced material entering the biorefinery. Harvest of herbaceous biomass is seasonal and the window of harvest is limited. Biomass needs to be stored at a central location. Normally, several or many of these central storage locations in a certain range of a biorefinery are needed to ensure 24 hours a day and seven days a week supply. These centralized storage locations are commonly called satellite storage locations (SSL). The size and number of SSLs depend on the size of the biorefinery plant, availability of biomass within a given radius, window of harvest, and costs.

It is convenient to envision the entire biomass logistics chain from fields to biorefineries with three sections. The first section is identified as the "farmgate operations", which include crop production, harvest, delivery to a storage location, and possible preprocessing at the storage location. This section will be administrated by farm clientele with the potential for custom harvest contracts. The second section is the "highway hauling operations," and it envisions commercial hauling to transport the biomass from the SSL to the biorefinery in a cost effective manner. The third section is the "receiving facility operations," and it includes management of the feedstock at the biorefinery, control of inventory, and control of the commercial hauler contract holders to insure a uniform delivery of biomass for year-round operation.

Agricultural biomass has low bulk density, and it is normally densified in-field with balers, or chopped with a self-propelled forage harvester. Currently, there are four prominent harvesting technologies available for biomass harvesting [1]. They are: (1) round baling, (2)

Подпись: Chapter 6

© 2013 Liu et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

rectangular baling, (3) chopping with a forage harvester, and separate in-field hauling, and

(4) a machine that chops and loads itself for in-field hauling (combined operation). Large round and large rectangular balers are two well-known and widely accessible harvesting technologies [2], which offer a range of advantages and disadvantages to farmgate operations. Round bales have the ability to shed water. When these bales are stored in ambient storage, they will store satisfactorily without covering and storage cost is significantly reduced. The round baler, because it is a smaller machine with fewer trafficability issues, can be used for more productive workdays during an extended harvest season over the winter months [3]. Large rectangular bales have greater bulk density, ease of transport, and increased baler productivity (Mg/h). However, the increased capital cost for the large rectangular baler and the bales’ inability to shed water limit its use on farms in Southeastern United States. Bale compression machines are available to compress a large rectangular bale and produce high-density packages [4]. The densified package has two or three times higher density than the field density of large rectangular bales [5].

The goal of an effective logistics system is to streamline storage, handling, and preserve the quality of the biomass through the entire logistics chain. This goal will minimize average feedstock cost across year-round operation. The farmer shares the goal to preserve the quality of the biomass, and also desires to produce the biomass at minimum cost. To assist in the accomplishment of the mutual objectives of both parties, this chapter will discuss major logistics and machine systems issues starting from the farmgate to the receiving facilities at a biorefinery. Constraints in this biomass supply chain will also be discussed. The impact of different harvest scenarios for herbaceous biomass harvest will be shown. Logistics systems have been designed for many agricultural and forest products industries. Thus, it is wise to use the lessons learned in these commercial examples. Each of these industries faces a given set of constraints (length of harvest season, density of feedstock production within a given radius, bulk density of raw material, various storage options, quality changes during storage, etc.), and the logistics system was designed accordingly. Typically, none of these systems can be adopted in its entirety for a bioenergy plant at a specific location, but the key principles in their design are directly applicable. Commercial examples will be used in this chapter to interpret these principles.

Total Racks and Assets Required for 24-h Hauling

Since the only time deliveries are not being made is the 24-h period from 0600 Sunday to 0600 Monday, the amount in at-plant storage can be reduced. Using 1.5 days as the minimum at-plant storage, so the total capacity hours required in at-plant storage at 0600 Sunday, when deliveries are ended for the week, is

24 h (actual) + 1.5 d x 24 h / d (at — plant storage) = 60 hours

3.75 racks / h x 60 h = 225 racks

Total trailers are calculated as follows. Each truck has one trailer connected, two parked at a "day-haul" SSL and nine parked at a "night-haul" SSL for a total of 12 trailers. The total racks on trailers are calculated as:

5 trucks x 12 trailers per truck x 2 racks / trailer = 120 racks

Total racks required are:

At-plant + On 60 trailers + Reserve = Total 225 + 120 + 5 = 350

The actual number of racks required is calculated by subtracting the racks on parked trailers from the rack total (empty + loaded) at the plant. Potentially, 60 loaded trailers can
be parked at the receiving facility when hauling ends for the week at 0600 Sunday. In order for this procedure to work, the racks on most of these 60 trailers have to be returned to SSLs during the period 0600 Sunday to 0600 Monday so they will be in position for operations to begin at each SSL at 0600 Monday. This requires some empty back hauls. Cost for these empty back hauls is a level of detail that must wait for a more sophisticated analysis.

When racks on trailers are counted as part of the at-plant storage, the minimum number of racks is:

At-plant + On 60 trailers + Reserve = Total (225-120) + 120 + 5 = 230

Average number of cycles per rack is 29,610 racks processed per year divided by 230, that is 129 cycles per year; or about 2.7 cycles per week for 47 weeks of annual operation.